Moodle DX Update

Andrew Lyons
Principal Architect
Moodle LMS

Agenda

e Changes to Moodle Versioning
and Deprecation policies
Upgrade Notes from Moodle 4.5

e Coding Style and related tooling
Dependency Injection

o Clock
o Hooks

Moodle Versioning

e Changing after Moodle 4.5
No change to:
o Frequency
o Release cycle
o LTS cycle
e The release after an LTS will be a
new Series version
e The last release in a series will be
an LTS

Moodle 5.1.2
| | L— minor version
| L—— major version
L series version

Moodle versioning

Moodle 4.5 LTS -- Under development
Moodle 5.0 -- New Series

Moodle 5.1

Moodle 5.2

Moodle 5.3 LTS -- Last in Series
Moodle 6.0 -- New Series

Moodle 6.1

Moodle 6.2

Moodle 6.3 LTS -- Last in Series

Rationale

e C(Clearer meaning of version numbers
o Lastrelease is always an LTS
Aim to land biggest changes at the start of a new series
Give more time for big new changes to stabilise
More stable LTS releases
More predictable change planning for partners and larger institutions

Deprecation Policies

Previous policy New policy

Where possible: Where possible:

Emit debugging and continue to work Emit debugging and continue to work
for FOUR major versions until the release after the next LTS
Example: Example:

Something deprecated in 4.1 will be Something deprecated before Moodle
removed in Moodle 4.5 4.5 will be removed in Moodle 5.0
Something deprecated in Moodle 4.5 Something deprecated in Moodle 4.5 ->
will be removed in Moodle 5.3 5.2 will be removed in Moodle 6.0

Deprecated Previous policy New policy

4.1 45LTS 45LTS

4.2 5.0 5.0 New policy starts
4.3 5.1 5.0

4.4 5.2 5.0

4.5 5.3 LTS 6.0

5.0 6.0 6.0

5.1 6.1 6.0

5.2 6.2 6.0

5.3 6.3 LTS 7.0

Rationale

Reduce burden on developers

Easier to work out when removals will occur

Less frequent removals

Encourage plugin developers to have one branch per Moodle Series

More examples

Changes to JS Minification
PHP Version support (MDLSITE-7677)

Questions..?

Developer Upgrade Notes

e Specifically upgrade.txt

Intended to make it easier for plugin developers to
discover changes which impact them

Lots of them - 127 at last count

Spread out across Moodle

Lack consistency, and sorting, and standardisation
Not clear what should be mentioned or where

Developer Upgrade Notes (MDL-81125)

Impacts people contributing to Moodle core only
For Moodle 4.5 onwards
Move away from handwritten upgrade.txt files
Use CLI tooling to write upgrade notes
Generate Markdown files

o Central UPGRADING.md; and

o Per-component UPGRADING.md
Collect specific information:

o Issue number

o Type of change

o Component

https://moodledev.io/general/development/upgradenotes @

Rationale

e Improve discoverability of changes
Link to the issue where a change was made

e Provide guidance on when, what, and why a change should be
documented

e Allows better integrations with developer documentation

e Prevents merge and rebase conflicts for those making changes to
busier core components

Popdle Upgrade Bates Comereter

WAS DR0A LK wotd 30 QRACITE T MSOOAN AT Fr OMINORL SO MM 3 NORSLE.

Flotse rosebar thet the vttt sctionce »f e b)

plogis doalopes s vim sood 1 Seow how 1 e Wir pimim
Ar & srw Meadle wers i,

O NI Ou M 0 b0 000 15 JRCUMOAT Ohaagta Ter sits Mbdalstwaoee, of

Sor Lvseread AV chamoms WRLCS 37 POt apeciat B0 e e w1k of 1w
relevwrt compomen

! Pronkay Ladew sasbar ROL-231D

R e

L Tepe oFf O 0 Lo

| Saaaegn [Losss ooty 50 e adtiter) Crosted 200lisg to comte Oowelooer worse wim

2 AL
Crodd g voprede vl i ih 10 1T haming o lieve

http://www.youtube.com/watch?v=j1eJV-lIdt4

Questions..?

Moodle coding style

e Updates to the moodle-cs rulesets for PHP_CodeSniffer
Working towards deprecating and eliminating the need for
moodle-local codechecker

e Adding additional rules

https://moodledev.io/general/development/tools/phpcs

Dependency Injection

Available since Moodle 4.4

Encourages writing to an Interface

Allows you to swap out components

Allows you to swap in mocked versions of classes for

testing
o Hooks
o QGuzzle Client
o Time

e Automatically reset between tests

https://moodledev.io/docs/4.5/apis/core/di @

Dependency injection in legacy code

Fetching dependencies using the DI container

// Fetching an instance of the \core\http_client class outside of a class.
$client = \core\di::get(\core\http_client::class);

// Fetching an instance of a class which is managed using DI.
$thing = \core\di::get(my_thing::class);

Dependency injection in newer code

Injecting via the constructor

class thing_manager { Define dependencies of your

public function __construct(. .
protected readonly \moodle_database $db, — class in constructor using

) { type hints

public function get_things(): array {
return $this—->db—>get_records('example_things');
I

}
When you fetch your class

// Fetching the injected class from legacy codei/ using DI, dependencies are
$manager = \core\di::get(thing_manager::class); resolved
$things = $manager—>get_things(); @

Dependency injection in newer code

// Using it in a child class:
class other_thing {

public function __construct(

protected readonly thing_manager $manager, DependenCIeS are recurS|ver
) { resolved

public function manage_things(): void {
$this->manager—>get_things();

s

Dependency injection in newer code

get_templates
tInterface $request,

ace $response, New Routing system aimed at

$themenam gurce oad=rns foduer, Moodle 4.5 uses DI
€,

$component,

$identifier,

MDL-81031

DI and Hooks

Use DI to dispatch a hook:

\core\di::get(\core\hook\manager::class)->dispatch($hook);

Allows you to mock the hook manager and include custom
hook callbacks for testing

https://moodledev.io/docs/4.5/apis/core/hooks#dispatching-hooks

DI and Time

e New \core\clock™ implementation since Moodle 4.4
e Meets PSR-20: Clock
e Allows you to become a Time Lord in Unit Tests

DI and Time

namespace mod_example;

class post {
public function __construct(
protected readonly \core\clock $clock,
protected readonly \moodle_database $db,
)

public function create_thing(\stdClass $data): \stdClass {
$data—>timecreated = $this—>clock—>time();

$data—>id = $this—>db—>insert_record('example_thing', $data);

return $data;

class my_test extends \advanced_testcase {

public function test_create_thing(): void {
// This class inserts data into the database.
$this—>resetAfterTest(true);

$clock = $this—>mock_clock_with_frozen(); Use a frozen clock

$post = \core\di::get(post::class);
$posta = $post—>create_thing((object) [
'name' => 'a’,

1)

sleep(10);
$postb = $post—->create_thing((object) [, .

S The timecreatedwill be
1); the same because the post

uses the \core\clock
// The frozen clock keeps the same time.
$this—>assertEquals($postb—>timecreated, $posta—->timecreated);

Questions..?

) noodle

Copyright 2024 © Moodle Pty Ltd

